SEÑORES SE ACABÓ EL TACTO RECTAL

2017-09-03_19.46.35
ADIÓS AL TACTO RECTAL POR TU MÉDICO, SERÁ EL ROBORECTAL QUIEN TE ACARICIE LA PRÓSTATA

LA SONDA CASSINI SE ESTRELLARÁ CONTRA SATURNO  

La misión de la NASA que orbita el planeta de los anillos desde 2004 concluirá el 15 de septiembre, tocando a su fin el heroico acto. Después de casi 20 años en el espacio, la sonda encargada de explorar Saturno termina su andadura. Y en la NASA han decidido que se despida a lo grande.
Desde el pasado mes de abril, la Cassini lleva realizando una serie de órbitas que la han llevado a sobrevolar la luna Titán desde muy cerca y la han preparado para colocarse entre el planeta y sus famosos anillos. Nunca antes ninguna otra nave se había aventurado tanto en su interior. El objetivo de estos últimos viajes es proporcionar datos que arrojen luz sobre cómo se forman y evolucionan los gigantes gaseosos. En su órbita final, enfilará a la atmósfera saturniana mientras envía datos… hasta que desaparezca en ella.
Otros vendrán. Los responsables de la NASA podrían haberla dejado girando alrededor del planeta, pero había un riesgo: que chocara con una de las lunas que ha estudiado con detalle: Encélado y Titán. Si así fuera, quizá contaminara los resultados de futuras misiones para estudiar su habitabilidad y, ¡quién sabe!, la posibilidad de que exista algún tipo de química prebiótica.

ACTO FINAL, GRAN CIENCIA HASTA EL ÚLTIMO SUSPIRO
Estos son los objetivos de la zambullida al interior de Saturno:

•Hacer un mapa detallado de los campos gravitatorios y magnéticos del planeta; tal vez así se pueda resolver el misterio de cuán rápido rota.

•Averiguar de qué material están hechos los anillos, lo que nos permitirá entender su origen. Para ello, Cassini tomará muestras de sus partículas heladas.

•Fotografiar más cerca de lo que nunca se ha hecho dichos anillos y las nubes del gigante gaseoso.
LA ‘GRAN ROJA’, RETRATADA

Betelgeuse
Solo hay unas pocas estrellas que se manifiestan como algo más que un punto luminoso, o sea, de las que podemos observar su disco. Una de ellas es Betelgeuse, supergigante roja situada a 650 años luz de la Tierra. Debido a su elevada masa -unas doce veces la de nuestra estrella-, es una prometedora candidata a explotar como supernova.
¿QUÉ ASPECTO TIENE?  Un conjunto de 66 antenas repartidas a lo largo de dieciséis  kilómetros en el desierto de Atacama (Chile). Los astrónomos lograron distinguir en ella penacho de gas tan grande como el sistema solar y una gigantesca burbuja que bulle en su superficie.

MISIÓN PLATO, A LA CAZA DE OTROS MUNDOS

Misión PLATO. aprobada por ESA
Si hay algo que está de moda es la búsqueda de planetas extrasolares. Prueba de ello es el nuevo gran proyecto de la ESA: la misión PLATO – acrónimo en inglés de Tránsitos Planetarios y Oscilaciones Estelares-, cuyo lanzamiento está previsto para 2026.
El telescopio empleará el método clásico: observar los pequeños eclipses o parpadeos que se producen cuando el planeta pasa por delante de la estrella a la que orbita. Sus objetivos se centrarán en mundos del estilo de la Tierra o mayores – las llamadas supertierras- que se encuentren en la zona de habitabilidad, esto es, donde sea factible la existencia de agua líquida sobre la superficie del planeta.

 

ASÍ FUNCIONA LA MENTE DE UN PSICÓPATA NEUROLÓGICAMENTE  

En estos individuos, los investigadores han detectado un funcionamiento anómalo en las regiones cerebrales que controlan las decisiones impulsivas. Al menos el 1% de la población mundial es psicópata, es decir, tiene un déficit de empatía hacia los demás. Y los criminales, ¿Qué mecanismos neuronales desencadena su personalidad?
Pues hasta ahora no había muchas pistas, pero un nuevo estudio realizado por neurocientíficos de la Universidad de Harvard arroja luz en el misterio. Dirigidos por Joshua Buckholtz, los especialistas examinaron los escáneres cerebrales de 50 presos que cumplían condena en Wisconsin. En el experimento, los reos – previamente calificados en un test estándar de psicopatía- respondieron a estímulos que ponían a prueba su capacidad de dominar sus impulsos. Así comprobaron que a mayor puntuación, más intensa era la reacción de una zona llamada estriado ventral, clave en las gratificaciones a corto plazo.

COTOCIRCUITO. A su vez, dicha región es controlada por otra, la corteza preírontal ventromedial, involucrada en las respuestas empáticas, el aprendizaje del miedo y la valoración sobre las consecuencias de nuestra conducta. La conclusión es que la conexión entre ambas está muy debilitada en los psicópatas: por eso cometen acciones monstruosas -y placenteras para ellos- desde el punto de vista moral sin pensar en los demás o sus efectos a la larga.

¿POR QUÉ TENEMOS MIEDO A LA OSCURIDAD? 
Por la pérdida de visión. La vista es nuestro sentido más fuerte. Algunos de nuestros depredadores tienen la visión nocturna mejor que la que tenían nuestros ancestros, que también tenían que preocuparse por los ataques enemigos; incluso hoy, uno de nuestros mayores miedos es sufrir un asalto. Muchos niños (y algunos adultos) sienten pavor ante el monstruo bajo la cama. Se llama » sensación de presencia», y es debido  a las actividades cerebrales inusuales. Algunos miedos parecen mucho peor en la oscuridad, porque estamos privados de la información visual y permitimos que nuestro cerebro se llena de pensamientos no deseados.

¿POR QUÉ TENEMOS LUNARES? 
Durante las 12 primeras semanas del embarazo, el feto desarrolla melanocitos ( las células que determinan el color definitivo de la piel). Y no siempre se distribuyen de forma homogénea. En algunas zonas se pueden formar agrupaciones, que se convertirán en lunares.
Los lunares son diferentes de las pecas. Casi todo el mundo tiene 30 y 60 lunares, pero solo tendrán pecas quienes tengan determinados genes ( que también proporcionan color rojizo en el pelo).

¿CÓMO HACE LA TIERRA PARA MANTENER UN NIVEL CONSTANTE DE OXÍGENO?
¡NO LO HACE!  El nivel de oxígeno del planeta ha variado drásticamente en los últimos 500 millones de años. Era de 35% en el periodo Carbonífero, hace 300 millones de años. Cuando bajó la temperatura, las plantas murieron y el oxígeno cayó hasta ser solo del 12% al principio del Triásico. Ya entonces, la atmósfera a nivel del mar sería más fina que hoy en la cima de los Alpes.
Los combustibles fósiles han reducido los niveles de oxígeno muy poco, solo un 0,057% en los últimos 30 años. El 70% del oxígeno proviene del plancton no de los árboles.

¿CÓMO TE MATA LA ELECTRIDAD? 
A baja intensidad, la corriente alterna interrumpe las señales de marcapasos natural que hay en el corazón y causa fibrilación, una arritmia en la que el órgano es demasiado débil para bombear. Si el ritmo no se restablece con un desfibrilador, es mortal. En intensidades elevadas la corriente continua provoca el mismo efecto al hacer que los músculos del corazón se contraigan a la vez. Las corrientes superiores a 1 A causan quemaduras por la corriente que pasa a través, mortales si alcanza el corazón o al cerebro.

¿PODRÍA EL IMPACTO DE UN ASTEROIDE  ACERCAR LA LUNA A LA TIERRA?                            
  LA  LUNA es muy grande, por lo que el impacto de un objeto pequeño contra ella no tendría efecto sobre su movimiento alrededor de la Tierra, pues el impulso de la Luna superará el del impacto. La mayoría de las colisiones de asteroides provocan solo cráteres; incluso si se tratase de Ceres, el asteroide más grande conocido solo dejaría una muesca sobre la superficie lunar.
Pero si el objeto que colisiona con la Luna tiene una masa y velocidad similar a la de ella, entonces sí que se alteraría la órbita lunar, tal vez el impacto incluso destrozaría la Luna.

EL LIBRO BEBIBLE
3,4 millones de personas mueren cada año por enfermedades que provienen del agua. Es un gran problema sin interés político alguno por solucionar, a la vista está; porque la mayoría de la gente que vive en zonas de agua no potable ni siquiera lo saben.
Para resolver el problema, la química Theresa Dankovich creó una especie de filtro hecho con un papel destructor de bacterias. Dankovich ha formado equipo con científicos de su Universidad, McGill, y la de Virginia, para fabricar El libro bebible.
Cuando el agua pasado a través de una página del libro queda con un 99,9% menos de bacterias, un contenido similar al del agua del grifo en Estados Unidos.
Cada página está recubierta de nanopartículas de plata, capaces de destruir enfermedades bacterianas como E. Coli, la tifoidea y el cólera. Cada filtro proporciona agua limpia durante 30 días, hasta 100 litros, y un libro puede durar hasta 4 años.

El libro está impreso con consejos para el consumo seguro de agua en inglés y en el idioma local

¿CÓMO MIDEN LOS ASTRÓNOMOS EL TAMAÑO DE LOS PLANETAS?            
Hay varias maneras de medir el diámetro de los planetas. La más común es medir el diámetro angular (la dimensión aparente del diámetro ecuatorial del planeta) utilizando un telescopio. Si se combina con su distancia (tomada de su órbita alrededor del Sol), nos revelará el tamaño real del planeta. Otra forma de estudiar satélites cuando eclipsan el planeta.

¿POR QUÉ ALGUNOS HACEN TRAMPAS?           
Quieren ganar de forma fácil. Como animales competitivos que somos, buscamos siempre formas fáciles de obtener dinero, comida y sexo, o simplemente quedar bien. Hacerlo de la manera difícil requiere tiempo, esfuerzo y energía, así que hacer trampas resulta muy tentador.
La teoría evolutiva nos ha ayudado a comprender que, además del engaño, también existe el altruismo. En general, las trampas funcionan cuando son pocas, pero se detectan enseguida cuando son frecuentes y hay menos víctimas a las que explotar.

¿CUÁL ERA LA ESPERANZA DE VIDA DE UN DINOSAURIO? 
Los científicos han medido la edad de algunas especies de dinosaurios por los anillos concéntricos dentro de los huesos fosilizados, un poco como ocurre con los troncos de los árboles.
Esta técnica no sirve para muchas especies, porque sus huesos siguieron creciendo sin presentar anillos reconocibles. La esperanza de vida para los saurópodos más grandes se calcula que era de 300 años. Esas estimaciones se basan en comparaciones con cocodrilos y tortugas que tienen un metabolismo mucho más lento. Se cree que los Diplodocus y los Apatosaurus solo vivían unos 80 años.

¿QUÉ DICTA DÓNDE CRECEN LAS RAMAS DE UN ÁRBOL?                
A medida que el tronco crece verticalmente, aparecen sobre él brotes, que al principio están inactivos porque el meristemo apical, el cuerpo vegetativo que se haya en la punta del tallo, produce auxina, una hormona que impide el desarrollo de los brotes. Cuando el tallo ha crecido lo suficiente, disminuye la concentración de auxina en los brotes y estos empiezan a crecer.

¿PODEMOS CALCULAR NUESTRA POSICIÓN ABSOLUTA EN EL UNIVERSO?                ¿
Nuestra posición en el universo siempre será relativa. Podemos ubicar nuestra posición en relación al Sol y a los planetas de nuestro sistema solar, o respecto a estrellas cercanas. Podemos incluso establecer nuestra posición aproximada respeto a los brazos espirales de la Vía Láctea, aunque nos movamos dentro de uno de ellos. Hemos determinado también la posición relativa de la Vía Láctea dentro del grupo local de galaxias respecto a otros cúmulos galácticos lejanos. Pero no existe un punto de referencia por el que podamos establecer nuestra posición en el cosmos. El Bing Bang aconteció en todas partes a la vez y el universo se está expandiendo desde entonces. Así que cada lugar puede entenderse como el origen de la expansión. Establecer una posición absoluta es imposible.

¿POR QUÉ ES BUENO LLORAR?                         
El llanto es catártico, alivia el estrés y elimina toxinas del cuerpo, y casi todos los terapeutas lo recomiendan. Está demostrado que la presión sanguínea baja y el ritmo cardíaco se ralentiza tras el llanto, y que algunas reacciones alérgicas disminuyen tras ver una película triste. Los pacientes de artritis reumática que lloran tienen menos dolores que los que lo hacen.
Aun así hay polémica. Los beneficios se dan más cuando la razón que empuja el llanto es un problema resoluble, y cuando la persona está mostrando sus emociones, no cuando sea producto de una depresión.

¿PUEDEN LOS PERROS DETECTAR EN CÁNCER?                   
Popularmente es conocido aquello de que los perros alertan en algunos casos a sus  dueños de síntomas tempranos de cáncer, muerte y otras enfermedades inminentes. Hay evidencias científicas de que en el caso de la detección de cáncer así es, al menos en perros entrenados. Perros expuestos a muestras de fluidos de enfermos de cáncer indican que pueden detectar presencia de cánceres de pulmón, próstata, y colorrectales entre otros. Se cree que el fino sentido del olfato de los perros puede detectar elementos volátiles producidos por las células malignas.
Aunque un estudio reciente indica que no se ha demostrado aún que las detecciones sean tan tempranas como para ser realmente prácticas. Se necesitan más investigaciones, y actualmente se trabaja para detectar cáncer de pulmón a partir de muestras del aliento de 1.500 mujeres enfermas.

¿POR QUÉ HACE MÁS FRÍO EN LA CUMBRE DE LA MONTAÑA , SI ESTAMOS MÁS CERCA DEL SOL?  
Como el sol está unos 150 millones de km, subir al Everest solo te cerca a unos 9 km, nada significativo.

Esta leve aproximación se ve completamente superada por el hecho de que a tu alrededor hay mucha menos atmósfera. Hay una caída constante en la presión atmosférica y en la temperatura al mismo tiempo. La tasa de descenso es muy rápida:  alrededor de 1° C por cada 100 metros de altitud.
Esta caída continuas a los 12 km sobre el nivel del mar, la tropopausa, donde se mantiene constante. A esas alturas, solo queda el 10% de la atmósfera, y la presión del aire es tan baja que la temperatura cae hasta -55° C. Las cabinas de los aviones se mantienen a temperaturas confortables usado en el aire caliente de los motores (antes de mezclarse con el carburante), y gracias a sus materiales aislantes.

¿POR QUÉ LAS ABEJAS MUEREN TRAS PICARNOS?
Los aguijones de las abejas tienen forma de sierra para insertarse profundamente en la picadura. No es un mecanismo suicida (pueden extraer sus aguijones tras atacar a otros insectos). Solo sucede con duras pieles fibrosas como la de los mamíferos, y al tratar de extraer el aguijón para escapar, se abren el abdomen. Es la única especie con esa característica, que, aun así, es un magnífico repelente contra los robos de miel.

¿SE EQUIVOCAN LOS ORDENADORES?
Los ordenadores no se equivocan, aunque pueden cometer errores. Cuando tu ordenador se cuelga, entra en una situación que le impide interpretar el código correctamente. En todo caso es un error humano haber escrito código erróneo fabricar malos componentes. O quizá es que el usuario le ha pedido al ordenador que haga algo fuera de sus tareas.

¿PASA EL TIEMPO MÁS DEPRISA CUANDO DORMIMOS?
En realidad no. La gente suele acertar calculando cuántas horas ha dormido. Algunos incluso consiguen despertarse, sin ayuda, a una hora previamente establecida. Pero durante el sueño nuestra percepción de tiempo se va alterada, de manera que tendemos a sobreestimar el cálculo en las horas tempranas del sueño y a calcular a la baja las últimas. Hay gente que dice haber soñado una vida entera en una sola noche.
Los mejores experimentos se han realizado induciendo sueños lucidos (cuando el durmiente sabe que está soñando), y el individuo indica que está haciendo en el sueño.      Contar hasta 100 soñando o despierto lleva el mismo tiempo en ambos casos, y las estimaciones de la duración del sueño suelen ser muy precisas.

EN SEGURIDAD ¿QUÉ DIFERENCIA HAY ENTRE LAS REDES 2G, 3G Y 4G? 

Las diferentes generaciones de telefonía móvil – 2G, 3G, 4G, y en un futuro cercano 5G- han ido mejorando las comunicaciones móviles de manera paulatina. Pero desde el punto de vista de la seguridad, las mejoras también han sido importantes.
GSM (2G) fue la primera generación de telefonía digital -anteriormente solo hubo telefonía móvil analógica- y ya nació con ciertas características de seguridad para autenticar a los usuarios -mediante el uso de la tarjeta SIM y criptografía simétrica-, proteger su identidad y ubicación -mediante el uso de identificadores temporales-, y protegerla con fidelidad de sus comunicaciones -mediante el empleo de cifrado simétrico-.
Hoy en día, todas las protecciones de GSM han sido vulneradas, y ya no suponen una protección real, pero en su día supusieron una gran mejora frente a la ausencia total de medidas de seguridad de la primera generación de telefonía móvil, en la cual se podían interceptar las llamadas utilizando un simple receptor de FM.
UMTS (3G) introdujo la autenticación bidireccional y un algoritmo de cifrado mucho más robusto que el utilizado en GSM. La autenticación bidireccional permite a un móvil verificar si la estación base con la que se comunica pertenece a la red del operador real o no. Esto suponía una gran mejora frente a 2G, porque en 2G  los móviles no tienen forma de distinguir si la estación base con la que se comunican es realmente del operador o, por el contrario, se trata de una estación base falsa perteneciente a un atacante.
LTE (4G) introdujo otro algoritmo de cifrado aún más robusto, y aumento la protección de la integridad de los mensajes intercambiados entre móvil y la estación base.
La siguiente generación, las 5G, introducirá el uso de criptografía asimetrica -de clave pública- para mejorar la autenticación entre los diferentes elementos de la red.

Aunque no lo tendremos disponible hasta el año 2020.
Por todo ello, siempre que podamos elegir, además de por razones de velocidad, es recomendable también por motivos de seguridad, que utilicemos siempre el servicio de comunicación móvil de la que sea, en cada momento, la última generación.
Por otro lado, con independencia de la tecnología de comunicación móvil que estemos usando, siempre que tengamos la opción será recomendable utilizar cifrado «extremo-a-extremo».
LA PROBABILIDAD DE INFECTARSE DEPENDE DE LA HORA DEL DÍA
Una investigación de la Universidad de Cambridge, en el Reino Unido, demuestra que la posibilidad de coger una infección depende del momento del día, ya que nuestro reloj biológico incide sobre la capacidad de los virus para replicarse y saltar de unas células a otras. En concreto, son más peleones a primera hora del día. Los científicos lo comprobaron en un grupo de ratones a los que inocularon el virus del herpes en distintos momentos de la jornada y después midieron sus niveles de infección. Así vieron cómo se multiplicaban hasta diez veces más cuando amanecía que al anochecer.

Una de las peculiaridades biológicas de estos patógenos es que, una vez que han penetrado en la célula, secuestran su maquinaria para producir miles de copias de sí mismos. Este proceso, similar en todos los procesos víricos, no sigue un ritmo uniforme, según los investigadores de Cambridge. El trabajo, publicado en la revista Proceedings of the National Academy of Sciences, puede ayudar a explicar porque quienes trabajan por turnos son más densos a sufrir infecciones.
ADIÓS A LOS CÁLCULOS DE RIÑÓN  

Quizá la voz hidroxicitrato (HCA) no te suene, pero da nombre a una sustancia de la corteza del tamarindo malabar- un arbusto de origen asiático- que es capaz de disolver los cálculos de riñón más comunes,  los formados por cristales de oxalato de calcio. Lo han descubierto científicos de la Universidad de Houston (EE. UU.)  Y se considera el mayor avance de las últimas tres décadas en la prevención de esta dolencia. Su importancia reside en que los tratamientos actuales solo consiguen detener el crecimiento de las piedras, pero el HCA reduce su tamaño, según se comprobó al microscopio. Además, el compuesto se elimina por la orina, la condición para que pueda ser usado como medicamento, lo que representa una esperanza para muchos potenciales pacientes. Cada año se diagnostican cálculos en nuestro país a 325.000 personas, según la Asociación Española de Urología.

GUARDIANES DE LA GRASA BUENO

Un grupo de investigadores de la Universidad de San Francisco (EE.UU.) ha descubierto un método para mantener a raya el exceso de peso que consiste en conservar el tejido adiposo beige, encargado de quemar calorías. Se trata de manipular genéticamente sus mitocondrias, los orgánulos de las células que les suministran energía.

Eliminando algunos genes se logra que las células grasa buena no eche mano de sus mitocondrias y las reservas lipídicas que acumula, y recurra a otras fuentes de combustible.
El experimento hecho en ratones ha demostrado ser eficaz en la prevención de la obesidad y la diabetes de tipo 2, según recoge la revista Cell Metabolism, y los científicos confían en que dé lugar a un tratamiento para afrontar estos problemas de salud pública; en España, el 21% de la población tiene sobrepeso, y cinco millones de personas, obesidad. El objetivo de las investigaciones ha sido durante mucho tiempo convertir, por ejemplo, la grasa de los michelines -blanca- en beige, pero ahora es conseguir que esta última permanezca en el cuerpo para que siga trabajando como quemagrasas.

UN ROBOTRASERO PARA QUE TU DOCTOR NO PALPE MÁS EL ANO

Dos españoles han participado en el diseño de un modelo anatómico virtual que permite ensayar la técnica del tacto rectal, prueba recomendada a los mayores de 50 años para detectar problemas de próstata.
Solo con escuchar la expresión tacto rectal a muchos hombres les entran sudores y posponen la prueba, a pesar de que se recomienda a partir de los 50 años para prevenir el cáncer de próstata. El nerviosismo no tiene sentido, porque la exploración no resulta dolorosa y los médicos están más que adiestrados. Por si queda alguna duda en el Imperial College de Londres han desarrollado un recto robótico para que aprendan esta práctica antes de aplicar a los pacientes. En su diseño han participado dos españoles, Fernando Bello y Alejandro Granados, que destaca la utilidad pedagógica que tiene este culito para los estudiantes de medicina y enfermería.
La tecnología que incorpora permite, por ejemplo, variar el tamaño de la próstata que se va a examinar. Las sensaciones que experimenta en los estudiantes son muy parecidas a las de una prueba real, ya que unos brazos robóticos aplican presión en el recto de silicona cuando el sanitario introduce el dedo. El profesor, a través de una pantalla de ordenador donde se muestra un modelo en 3D del recto y de la próstata, puede ver la anatomía interior y juzgar cómo realiza el alumno la exploración, si se han examinado las zonas oportunas o si queda alguna pendiente. La forma y la anatomía del Robotic Rectum se diseñó a partir de la información obtenida de un grupo de voluntarios a los que se hizo una resonancia magnética de las zonas que se revisan.

Fuente: ESA, NASA, Proceeding of the National Academy of Sciences, David Pérez y José Picó.

 

 

 

 

 

MISIÓN A ALFA CENTAURI

2017-07-07_15.53.00
EL PROYECTO MÁS AMBICIOSO PARA LA HUMANIDAD EN EL SIGLO XXI, MISIÓN A ALFA CENTAURI

Un plan financiado por un multimillonario pretende enviar pequeñas sondas espaciales a una estrella cercana

 

Los Starchips, microcircuitos similares a los de los teléfonos móviles, llegarían a Alfa Centauri tras ser acelerados por un potente láser hasta alcanzar una fracción considerable de la velocidad de la luz. Una vez en destino, captarían imágenes y tomarían datos durante un fugaz sobrevuelo.

Alfa Centauri es el sistema estelar más cercano al Sol. El multimillonario de Silicon Valley había anunciado la financiación de un proyecto, Breakthrough Starshot, para enviar hasta allí algún tipo de nave espacial, esta información la aporta el físico y matemático Freeman Dyson.

La nave espacial es interesante pero la controversia científica está servida 

Let’s go…

Así como la nave es interesante. En vez de usar un cohete normal, impulsado por combustible y lo bastante grande como para transportar seres humanos o instrumentos, el proyecto Starshot ( <<Disparo Estelar>>) pretende enviar una flota de diminutos chips multifunción bautizados Starschips. Cada uno de ellos iría acoplado a una <<vela solar>>, la cual sería tan ligera que, al incidir sobre ella un potente haz láser, se aceleraría hasta alcanzar el 20% de la velocidad de la luz. Alfa Centauri, un sistema binario formado por estrellas similares al Sol Alfa Centauri <<A y B>>, se encuentran a 4,37 años luz, por lo que el cohete más veloz tardaría 30.000 años en llegar. En cambio, los Starchips solo necesitarían 20 años. Una vez en su destino, las naves no se detendrían, sino que sobre volarían las estrellas y sus posibles planetas en pocos minutos. Durante ese tiempo transmitirían imágenes y datos a la Tierra, los cuales tardarían otros 4,37 años en arribar.
La <tontería>> es que no resulta obvio que el objetivo de la misión sea científica. Lo que los astrónomos desean saber sobre las estrellas no es algo que pueda aprenderse en un sobrevuelo fugaz. Y nadie sabe si Alfa Centauri posee planetas, por lo que Starshot ni siquiera puede prometer primeros planos de otros mundos. <<han pensado mucho menos en los aspectos científicos>, según Ed Turner, astrofisico de la Universidad de Princeton y miembro del Comité Asesor de Starshot. Añade además que, <<hemos dado casi por garantizado que la ciencia será interesante.>>
Sin embargo, en agosto de 2016 Starshot recibió un golpe de suerte: un grupo europeo de astronomos que nada tenía que ver con el proyecto anunció el hallazgo de un planeta alrededor de la estrella más cercana al Sol: Próxima Centauri, vecina de Alfa Centauri pero situada unos 0,1 años luz más cerca. De repente, Starshot se convirtió en la única forma semi viable de llegar a un exoplaneta en un futuro previsible. Con todo, el proyecto sigue recordando un poco a los sueños de esos fans de la ciencia ficción que hablan sin parar de enviar humanos fuera del sistema solar con técnicas que, seguramente, funcionarían si hubiese suficiente financiación y suficientes milagros tecnológicos, sin duda el sueño continuará pero hoy es más viable.
No obstante, Starshot no necesita milagros. Su tecnología, aunque hoy inexistente, se basa en ingeniería consolidada y no viola ninguna ley física. Y hay dinero detrás del proyecto: Yuri Milner, el empresario que también financia otras investigaciones mediante el programa Breakthrough Initiatives y que cada año concede los cuantiosos premios científicos Breakthrough, ha puesto en marcha la idea con una aportación inicial de 100 millones de dólares. Al mismo tiempo, ha reclutado a un comité asesor lo suficientemente impactante como para convencer a cualquier escéptico de que Starshot podría tener éxito: expertos mundiales en láseres, velas solares, microcircuitos, exoplanetas, aeronáutica y dirección de grandes proyectos, además de dos premios nobel, el astrónomo real del Reino Unido, eminentes astrofísicos del ámbito académico, experimentos ingenieros… y Dyson, que, por más que piense que la misión es absurda, también afirma que la idea de una vela solar impulsada por láseres tiene sentido y es digna de ser llevada a cabo. En conjunto, pocos apostaría a largo plazo contra una operación respaldada por tanto dinero y tantas mentes brillantes.
Con independencia de sus respectivas, el proyecto se diferencia por completo de cualquier misión espacial efectuada hasta ahora. << Todo lo relativo a Starshot es insólito>>, asegura Joan Johnson-Freese, experta en política espacial de la Escuela de Guerra Naval de Estados Unidos. Sus objetivos, financiación y estructura directiva distinguen de todos los demás actores del sector. Las empresas espaciales persiguen beneficios y se centran en misiones tripuladas dentro del sistema solar. La NASA, que no planea ningún viaje interestelar, tiene demasiada aversión al riesgo para intentar algo tan incierto. Sus procedimientos burocráticos son a menudo engorrosos y redundantes, y sus misiones suelen depender de la aprobación de un Congreso inconsecuente. << la NASA necesita dedicarle tiempo ; los multimillonarios pueden hacerlo sin más>>, asegura Leroy Chiao, antiguo astronauta y comandante de la Estación Espacial Internacional

La Estrategia

El impulsor de Starshot siempre se ha sentido inspirado por metas lejanas. Yuri Milner nació en 1961, el mismo año en que Yuri Gagarin se convertía en el primer ser humano en viajar al espacio. << mis padres me mandaron un mensaje al ponerme Yuri>>, afirma, queriendo decir que estaba llamado a ir a algún lugar al que nadie hubiese llegado antes. Así que estudió Física -<< mi primer amor>>, aclara con gran pasión- y, tras 10 años de formación, comenzó a trabajar en cromodinámica cuántica. <<Por desgracia, no lo hice muy bien>>. Después entro en el mundo de los negocios, se convirtió en uno de los primeros inversores de Facebook y Twitter y amasó una fortuna estimada en casi 3. 000 millones de dólares. <<Así que, hace unos cuatro años, comencé a pensar de nuevo en mi primer amor.>>
En 2013 fundó los Breakthrough; uno en física fundamental, otro en ciencias de la vida y otro en matemáticas. Y en 2005 comenzó con lo que él califica como su pasatiempo, el programa Breakthrough Initiatives. Este viene a ser una especie de compromiso con el universo: un premio de un millón de dólares para el mejor mensaje dirigido a una civilización extraterrestre, 100 millones de dólares para una búsqueda más amplia y minuciosa de inteligencia alienígena, y, ahora, 100 millones de dólares para Starshot.
A principios de 2015, Milner reclutó el núcleo directivo de Starshot entre las personas que había conocido gracias a Breakthrough Initiatives. El presidente y el director ejecutivo del comité asesor son, respectivamente, Avi Loeb, director del departamento de astronomía de Harvard, y Pete Worden, quién dirigió el Centro de Investigación Ames de la NASA y que estuvo implicado en un plan de la NASA y de la Agencia de Proyectos de Investigación Avanzados para la Defensa (DARPA) para lanzar una nave interestelar de aquí a 100 años. Para el cargo de director de ingeniería, Worden enroló a Pete Klupar, ingeniero que había trabajado de manera intermitente en la industria aerospacial y que Ames había estado a su servicio. Ellos se encargaron de convocar a un expectacular comité de expertos en tecnologías clave que, aparentemente, estaban dispuestos a participar por poco o ningún dinero, así como a personalidades como Mark Zuckerberg o el cosmólogo Stephen Hawking. La gerencia de Starshot parece hallarse a medio camino entre el rigor jerárquico de la NASA y la cultura de Silicon Valley, consistente en reunir a un grupo de personas inteligentes en una sala, proponerles un objetivo a largo plazo y quedarse al margen. James Benford, miembro del comité y presidente de Microwave Sciences, lo explica así: << el encargo es darnos la semana que viene y cinco años de plazo y ya averiguaremos cómo conectarlos>>.
Una vez reunido, el equipo descartó por inverosímil la posibilidad de enviar seres humanos a Alfa Centauri y decidió concentrarse en una misión no tripulada que partiría de aquí a 20 años. Después concluyeron que el gran problema era la producción de la nave. Así que, a mediados de 2015, los doctorandos y los investigadores posdoctorales de Loeb comenzaron a clasificar las distintas opciones en imposible, improbable y factible. En diciembre de ese año, recibieron un artículo de Philip Lubin, físico de la Universidad de California en Santa Bárbara, titulado <<Hoja de ruta para un viaje interestelar>>. La opción de Lubin consideraba una batería de láseres en fase: un gran número de pequeños placeres cuya luz se combinaría de forma coherente en un solo. Este impulsaría un chip transportado en una vela solar, lo cual tendría que desplazarse a una fracción considerable de la velocidad de la luz para llegar a otra estrella en pocas décadas. (Una idea similar había sido publicada 30 años antes por el físico y escritor de ciencia ficción Robert Forward, que la bautizó como Starwisp.) Aunque la tecnología necesaria era aún más ciencia ficción que realidad, Lubin asegura que, a grandes rasgos, aquello marcó la estrategia de Starshot. Posteriormente,  se unió al proyecto.
En enero de 2016, Worden, Klupar, Loed y Lubin se reunieron con Milner en su casa de Silicon Valley. <<Yuri apareció con un papel lleno de notas adhesivas y comenzó a hacer las preguntas científicas y económicas correctas>>. Lo bueno de ello era que, en lugar de someter el proyecto a un largo proceso de solicitud y revisión de propuestas, como habría hecho la NASA, o de preocuparse por los beneficios económicos, como haría una empresa, el equipo de Starshot tenía libertad para trazar un plan basándose en lo que mejor le pareciese.
El único elemento verdaderamente costoso era el láser. Las velas y los chips serían baratos e incluso desechables:  se agruparían en una lanzadera, se enviarían más allá de la atmósfera y se liberarían, uno a otro, cientos o miles de ellos; tantos que no supondría ningún drama perder unos pocos. El láser impactaría sobre cada uno y, en pocos minutos, lo aceleraría hasta alcanzar el 20% de la velocidad de la luz. A continuación, el láser se desactivaría y el chip y la vela emprenderían su camino. Una vez en la estrella, se comunicarían con la Tierra. <<Hace diez años nunca hubiéramos hablado en serio de esto>>, afirma Milner.
Pero hoy, con la mejora exponencial en láseres y microcircuitos y gracias a los nuevos materiales, <<no estamos a siglos de distancia, sino a unas docenas de años>>.

El equipo de Starshot sometió la idea a revisión externa y pidió a varios científicos que buscasen fallos. Nadie encontró ninguno. <<Puedo explicarle por qué es difícil y por qué es caro, pero no por qué es imposible>>, afirma Lubin. En abril de 2016 se llegó a un acuerdo sobre el sistema y, el día 12, Milner organizó una rueda de prensa en la Freedom Tower de Nueva York con vídeos, animaciones y varios miembros del comité asesor y anunció un velero interestelar impulsado por viento lumínico. Ese verano, los investigadores se dedicaron a esbozar lo que habría de ocurrir continuación.

CHIPS, VELAS Y LÁSERES

El equipo pronto descubrió que, aunque técnicamente factible, el plan se encontraba plagado de dificultades. Incluso el elemento más sencillo, StarChip, planteaba numerosos problemas. Debía ser diminuto y pesar unos pocos gramos, pero también capaz de almacenar y enviar datos, transportar su propia fuente de alimentación y sobrevivir al largo viaje. Hace unos años, el grupo del ingeniero Mason Peck, de Cornell, diseñó lo que denominaron Sprites: chips similares a los de un teléfono inteligente y dotados de un sensor de luz, paneles solares y un equipo de radio, cada uno de unos cuatro gramos. Los de Starshot seguirían el modelo de los Sprites, pero pesarían incluso menos, alrededor de un gramo, y llevarían cuatro cámaras cada uno. En vez de pesadas lentes para enfocar las imágenes, una opción consistiría en colocar sobre el sensor de luz una diminuta red de difracción, llamada matriz plana de captura por transformada de Fourier; la cual  separa la luz incidente en longitudes de onda que posteriormente pueden reconstruirse en un ordenador para cualquier distancia focal. Otro equipamiento sugerido para el chip incluye un espectrógrafo, para analizar la composición química de la atmósfera de un planeta, y un magnetómetro, para medir el campo magnético de una estrella.
Los chips también tendrán que enviar sus imágenes a través de distancias interestelares. Los satélites actuales usan diodos láser de un vatio para mandar información, pero a distancias mucho menores. Peck señala que, hasta ahora, la mayor separación ha sido desde la Luna, más de cien millones de veces más cerca de Alfa Centauri. Para alcanzar la Tierra desde allí, el láser necesitaría una puntería extraordinaria. Además, durante el viaje de cuatro años, la señal se dispararía tanto que solo llegarían unos cientos de fotones. Una posibilidad consistiría en enviar las imágenes mediante repetidores, mandando los datos de unos StarChips a otros situados detrás a distancias regulares. Zac Manchester, investigador de Harvard y miembro del comité asesor, asegura que enviar la información a la Tierra plantea un problema <<verdaderamente complejo>>.
Los chips también necesitarán baterías para las cámaras y para que los ordenadores de a bordo transmitan datos durante el viaje de 20 años. Dada la distancia a Alfa a Próxima Centauri y los pocos vatios que pueden alcanzarse en un pequeño chip, la señal llegaría a la Tierra débil, aunque <<justo con los suficientes fotones para ser captada por el receptor de Starshot>>, comunica Peck. Hasta la fecha, ninguna fuente de alimentación funciona simultáneamente en condiciones de oscuridad y bajas temperaturas, pesa menos de un gramo y cuenta con suficiente alimentación. <<La alimentación constituye el mayor problema del chip>>, añadiendo la posibilidad de adaptar las diminutas baterías nucleares usadas en los implantes médicos. Otra alternativa consistiría en aprovechar la energía ganada por la vela mientras viaja a través del medio interestelar y se calienta por el rozamiento con el gas y el polvo.
Sin embargo, el mismo medio interestelar también podría comprometer la integridad de los chips. Dicho medio se asemeja al humo altamente enrarecido de un cigarrillo, explica Bruce Draine, astrónomo de la Universidad de Princeton y miembro del comité. Nadie conoce con exactitud su densidad ni el tamaño de los granos de polvo que contiene, por lo que resulta difícil estimar su capacidad devastadora. A una velocidad cercana a la de la luz, una colisión de los StarChips contra granos de cualquier tamaño podría producir desde pequeños cráteres hasta su destrucción total. Si los StarChips abarcan un centímetro cuadrado, se producirán muchísimas colisiones a lo largo del camino, advierte Drain. Una posible protección frente a las partículas de menor tamaño podría conseguirse con un revestimiento de cobre y berilio de un par de milímetros de espesor, aunque los granos de polvo aún podrían causar daños catastróficos. <<El chip sobreviviría o no>>. Pero, con suerte, de los cientos o miles algunos resistirían.
En orden de dificultad técnica creciente, el siguiente elemento más delicado es la vela solar. Los StarChips estarían propulsados por la luz que incide ese y se reflejase en sus velas, como cuando una pelota de tenis rebota en una raqueta. Cuanta más luz se refleje, mayor será el impulso y más rápido avanzar a la vela. Para alcanzar el 20% de la velocidad de la luz, la vela solar debería reflejar el 99,999 por ciento de la luz incidente. <<Toda la que no se refleje acabará calentando la vela>>, explica Geoffrey Landis, científico del Centro de Investigación Glenn de la NASA y miembro del comité asesor. Y, dadas las extraordinarias temperaturas que alcanzará el láser, sería desastroso que incluso una pequeña fracción de esa potencia alcanzarse la vela, aclara el investigador. En comparación con las velas solares actuales, que hasta ahora han aprovechado la luz del Sol para propulsar algunas naves experimentales en el sistema solar, las de Starshot tendrían que ser mucho más ligeras, con un espesor de pocos átomos o << mismo tamaño que una pompa de jabón>>, afirmación de Landis. En el ensayo más parecido efectuado hasta ahora, realizado en el año 2000 por Benford, se empleó un haz de microondas para acelerar una vela fabricada con una lámina de carbono hasta 13g (13 veces la aceleración de la gravedad en la superficie terrestre).
Sin embargo, la vela de Starshot tendrá que soportar aceleraciones de hasta 60.000g. Y, al igual que el StarChip, también tendrá que resistir el polvo interestelar. Hoy por hoy no existe un material que sea al mismo tiempo ligero, fuerte, reflectante, resistente al calor y que no cueste millones de dólares. <<Uno de los varios milagros que tendremos que obrar será inventar el material de la vela>>

El chip podría unirse a la vela mediante cables o bien quedar montado sobre ella. Y la vela podría girar, lo que permitiría permanecer centrada con respecto al láser. Tras la aceleración inicial, cabría la posibilidad de plegar la vela como un paraguas, lo que la haría menos vulnerable durante el viaje. Una vez en Alfa Centauri, se abriría y ajustaría su curvatura para actuar como el espejo de un telescopio o como una antena en el envío de mensajes a la Tierra.
En realidad, todos estos retos serán más sencillos que los relativos al láser. La única forma de alcanzar una fracción considerable de la velocidad de la luz es empleando un láser de 100 gigavatios, una potencia nada usual. El Departamento de Defensa de Estados Unidos ha fabricado láseres más potentes, informa Robert Peterkin, jefe científico de la Junta de Energía Dirigida, perteneciente al laboratorio de Investigación de las Fuerzas Aéreas de EE. UU., pero solo se activaron durante billonésimas o  milmillonésimas de segundo. Sin embargo, en láser de Starshot tendrá que actuar sobre cada vela durante varios minutos. Para alcanzar semejante potencia durante tanto tiempo, una batería de pequeños y láseres de fibra óptica combinaría los rayos en un único haz coherente. El Departamento de Defensa también ha construido baterías de láseres en fase, pero con 21  láseres agrupados en una red de no más de 30 centímetros de lado, según Peterkin. Eso permite alcanzar unas decenas de kilovatios. Starshot a que incorporar 100 millones de estos láseres con potencia de kilovatios y disponerlos en una red cuadrada de un kilómetro de lado. <<¿Cuán lejos queda eso de la tecnología actual?>>.
<<Y las complicaciones van en aumento>>. La turbulencia habitual de la atmósfera desviaría el haz de cada uno de los 100 millones de pequeños láseres de manera diferente. Al final, todos deberían focalizarse sobre una vela de 4 metros de lado situada a 60.000 kilómetros de altitud. <<Hoy, poner en fase 100 millones de láseres a través de la turbulencia atmosférica y apuntar a un blanco de pocos metros ubicado a 60.000 kilómetros acapara mi atención>>, asegura Robert Fugate, científico jubilado de la Junta de Energía Dirigida y miembro del comité. La luz podría cerrar por completo subjetivo o, con mayor probabilidad, alcanzar la vela de forma irregular, por lo que ciertas zonas recibirían un impulso mayor que otras y la nave se tambalearía, giraría o se saldría del haz.
De nuevo, el equipo de Starshot ha dado con una posible solución, si bien se trata de una que presenta sus propios problemas. Una técnica conocida como óptica adaptativa, usada ya en grandes telescopios, permite cancelar la distorsión causada por la atmósfera mediante un espejo flexible, el cual genera una distorsión igual y opuesta. Sin embargo, será necesario efectuar grandes ajustes para adecuarla al proyecto. En vez de un espejo, habría que configurar minuciosamente cada láser de fibra óptica. La óptica adaptativa usada hoy en los telescopios permite una resolución de 30 milisegundos de arco, pero Starshot tendría que enfocar en 0,3 milisegundos de arco, algo que jamás se ha hecho hasta la fecha.
Y, aunque se lograsen desarrollar todas estas complicadas y disparatadas técnicas, después tendrían que funcionar en conjunto. Para los líderes de Starshot, eso equivale a armar un rompecabezas con piezas que cambian de forma o que aún no existen. El sistema aún carece de un diseño único, informa Kevin Parkin, ingeniero de sistemas de Parkin Research e integrante del comité. El plan para los cinco primeros años, es <<recolectar la tecnología>>. Es decir, asesorados por los expertos del comité, los miembros del equipo realizarán experimentos a pequeña escala y desarrollarán modelos matemáticos. En el invierno de 2015-2016 comenzaron averiguando qué técnicas existían ya y solicitaron propuestas sobre aquellas aún por desarrollar. En 2017 tienen la intención de adjudicar pequeños contratos con  importes desde varios cientos de miles de dólares hasta 1,5 millones. Los prototipos de entran a continuación y, suponiendo que tengan éxito, la construcción del láser y de la vela podría comenzar a principios de los años treinta de este siglo, con el lanzamiento para mediados de los cuarenta. Para entonces Starshot probablemente habrá costado miles de millones de dólares y, con suerte, o un milagro, habrá logrado la colaboración de Gobiernos, laboratorios y agencias espaciales en EE. UU., Europa y Asia. Milner afirma apasionado que, <<defenderá al proyecto, y espera que se apunte más gente>>, <<ha de ser global>>, añadiendo las lógicas preocupaciones sobre seguridad nacional que plantearía una descomunal instalación láser. <<Si algo como esto comienza en secreto, habrá muchos más interrogantes. Es importante anunciar  abiertamente nuestras intenciones.>>

Camino a las estrellas

Con todos estos obstáculos, ¿cuáles son las probabilidades de éxito?  Los expertos en tecnología ajenos a Starshot estima que son pequeñas. Varios de ellos dirigieron abiertamente: <<No van a ir a Alfa Centauri>>. David Charbonneau, del Centro Smithsoniano  de Astrofísica de Harvard, aduce que el proyecto resultará tan costoso que habrá que convencer a EE. UU. para que invierta el 5% del presupuesto nacional, la misma fracción que requería el programa Apolo.
Los implicados en Starshot piensan que las probabilidades son mayores, pero se muestran pragmáticos. <<Claro que podemos usar láseres para enviar naves a Alfa Centauri>>, afirma Greg Matloff,  de la Escuela de Tecnología de Nueva York y miembro del comité. <<Lo que no sé es si podremos llegar allí en los próximos 20 años.>> Para Manchester, las probabilidades de lograrlo de aquí a 50 años son bastante altas, y, dentro de un siglo, <<del cien por ciento>>. Worden cree que el planteamiento está cuidadosamente medido, y que quizá dentro de cinco años descubran que no pueden ejecutarlo. Y Milner considera que su papel en Starshot, además de la financiación, consiste en mantenerlo en términos prácticos y bien fundamentados. <<Si requiriese más de una generación, no deberíamos trabajar en el proyecto>>.
Hasta agosto del año pasado pensó que Dyson tenía razón: la tecnología era interesante, pero ir a Alfa Centauri resultaba absurdo. Se trataba de un sistema binario formado por estrellas similares al Sol. Ninguna es extraordinaria. Los astrónomos ya saben bastante sobre ellas, y aunque fuese útil comparar sus llamaradas y campos magnéticos con los del Sol, <<la inversión no merece la pena para lo que aprenderíamos sobre física estelar viajando hasta allí>>.
Ahora que los astrónomos saben que la vecina alfa Centauri tiene un planeta, la motivación científica es otra. Próxima Centauri se encuentra un poco más cerca de la Tierra y es una enana roja, el tipo de estrella más habitual. El planeta, próxima b, se haya en la zona habitable de Astro. Cuando se anunció el descubrimiento, el equipo de Starshot lo celebró con una cena. ¿Considerarían un cambio de objetivo?, queda claro que sí, además se dispone de tiempo de sobra para decidir. La batería de láseres debería ser lo bastante flexible para adaptarse a la diferencia; <<unos dos grados>>, afirma Fugate.
En última instancia, el objetivo de Breakthrough Initiatives consiste en encontrar todos los planetas del vecindario solar y, Próxima b podría ser solo el principio. Klupar añade risueño, <<Me siento como un entomólogo que levanta una roca, encuentra un insecto y luego piensa que habrá uno debajo de todas las demás rocas>>, bueno, <<no es cierto, pero de algún modo resulta estimulante.>>
Desde luego, ni siquiera la presencia de Próxima b basta para convertir a Starshot en un proyecto científico rompedor. Los chips tal vez tomen imágenes y quizá me dan el campo magnético del planeta o analicen su atmósfera, pero habrán de hacerlo en pocos minutos. Y, dado el coste final del proyecto y el tiempo que transcurrirá hasta el lanzamiento, <<podríamos construir un telescopio espacial óptico de 12 o 15 metros, observar el planeta durante meses y obtener mucha más información que en un sobre vuelo fugaz>>, así opina David Spergel, astrofísico de Princeton.
Definitivamente, los multimillonarios son libres de invertir en lo que deseen, y las almas gemelas son libres de unirse a ese anhelo despiertos. Además, muchos de quienes cuestionan el valor científico de Starshot lo apoyan de todos modos, ya que, al desarrollar la tecnología necesaria, puede darse casi por seguro que los ingenieros lograrán algo interesante. <<No resolverán todos los problemas, pero solucionarán uno o dos>>. Una respuesta ingeniosa a un solo problema complejo ya constituirá un gran éxito, afirma Spergel. Suponiendo que Starshot no triunfase, las técnicas que desarrollasen podrían usarse en misiones futuras a destinos importantes, tanto dentro como fuera del sistema solar.
Milner enamorado del proyecto;  le lleva a la conclusión de que podría unir a todas las personas del mundo bajo la idea de que somos un planeta y una especie. <<En los últimos seis años he pasado la mitad de mi tiempo viajando, en gran parte por Europa y Asia>>, <<Me he dado cuenta de que un consenso global es difícil, pero no imposible.>>  Ese objetivo encaja con los otros proyectos de Breakthrough Initiatives,  que en esencia persiguen encontrar extraterrestres con quienes comunicarse, y con las notables inversiones de Milner en internet y redes sociales, que han trasformado las nociones de conversación y comunicación. Pero, en el fondo, incluso el mismo reconoce que el deseo de ir a otra estrella es inexplicable. Reconoce que no sabe el porqué pero que sólo piensa que es importante.
Casi todo el mundo a quien he interpelado me ha respondido lo mismo: no pueden explicarlo a alguien de que no lo comprende, simplemente quieren ir allí. James Gunn,  profesor emérito del departamento de Astrofísica de Princeton, piensa que las probabilidades de éxito de Starshot  son escasas y rechaza las motivaciones científicas. Pero, a pesar de ello, confiesa: <<Soy  racional sobre la mayoría de las cosas, pero no especialmente sobre los límites de la humanidad. He soñado con ir a las estrellas desde que era niño>>.  buena parte de los miembros del comité asesor me indicaron lo mismo.  Ciertamente los miembros del comité repitieron el mismo deseo de llegar a las estrellas desde niños.
Quizá Dyson sea quien mejor expresa las contradicciones inherentes a esos sueños. Sostiene que una vela solar con un microchip e impulsada por láser tiene sentido, y que quienes están detrás del proyecto son inteligentes y <<bastante sensatos>>.  Pero piensa que deberían abandonar el intento de ir a Alfa a Próxima Centauri y centrarse en la exploración del sistema solar, donde los StarChips  podrían propulsarse con láseres menos potentes y más viables y  viajar a velocidades menores. <<La  exploración es algo inherente al ser humano>>. <<Es algo en lo que destacamos.>>  y que no hay una justificación científica para enviar seres humanos. Entonces, con su característica imprevisibilidad, finaliza añadiendo: <<Por otro lado, me encantaría ir allí>>.

EN SÍNTESIS

– Yuri Milner, un multimillonario de Silicon Valley, ha decidido invertir en un audaz proyecto para enviar sondas diminutas a Alfa Centauri, el sistema estelar más cercano al Sol.

– La misión, llamada Breakthrough Starshot, pretende usar láseres para acelerar una flota de microchips al 20 por ciento de la velocidad de la luz. Las naves tardarían 20 años en arribar.

– El proyecto cuenta con el asesoramiento de numerosos ingenieros y científicos. No obstante, otros expertos opinan que es caro, arriesgado y dudan de su interés científico.

– Cómo visitar otra estrella; el proyecto Breakthrough Starshot planea enviar diminutas naves espaciales a Alfa Centauri, el sistema solar más cercano al Sol. De tener éxito, la misión supondría el primer viaje interestelar de la humanidad. La idea se basa en emplear una batería de láseres para acelerar una flota de chips a una velocidad próxima a la de la luz, con lo que apenas tardarían 20 años en llegar a su destino. Para ser impulsados, los microcircuitos, llamados StarChips, viajarían sujetos a una <<vela solar>>, una lámina ultrafina y muy reflectante. Al llegar, tomarían imágenes y datos durante un rápido sobrevuelo y enviarían esa información a la Tierra.

1. Una <<nave nodriza>> será puesta en órbita mediante un cohete tradicional. Una vez allí, liberará un StarChip al día durante más de tres años para su partida hacia Alfa Centauri.

2. Desde la Tierra, cien millones de láseres distribuidos en un área de un kilómetro de lado combinarán sus rayos de forma coherente en un único haz. Al incidir sobre las velas solares de los StarChips, las acelerarán hasta el 20 por ciento de la velocidad de la luz en apenas unos minutos.

3. Los StarChips se comunicarán con la Tierra enviando señales a la misma red de láseres que los aceleró. A distancias interestelares, los dispositivos deberán apuntar con una precisión extraordinaria para que las imágenes y los datos lleguen a nuestro planeta.

– Los StarChips se basarán en los microcircuitos que hoy incorporan los teléfonos inteligentes. Con unas dimensiones de unos 15 milímetros y una masa de un gramo cada uno, portarán cámaras, baterías, un equipo para el envío de señales y, posiblemente, un espectrógrafo para analizar la composición química de Alfa Centauri y sus planetas, así como un magnetómetro para medir sus campos magnéticos.

– Vela solar; de unos 4 metros de lado cada una, las velas solares serán impulsadas por la presión de la luz láser que incida y se refleje en ellas. Para alcanzar el 20 por ciento de la velocidad de la luz, deberán ser extraordinariamente ligeras y reflejar el 99,999 por ciento de la radiación incidente. Los expertos aún han de decidir si los StarChips se fijarán a las velas mediante cables o si irán montados directamente sobre ellas.

Fuente: Philip Lubin, Freeman J.Dyson, Jean-Michel Courty, Édouard Kierlik, Cameron M. Smith y Ann Finkbeiner

Conclusión

Hasta el momento este es el proyecto más ambicioso para el avance de la humanidad en el siglo XXI

El proyecto se llevará a cabo con o sin la ayuda de EE. UU. en invertir un 5%, pero dudo que Bruselas no colabore en dicha inversión. Por más dudas o controversia cause este proyecto, es sumamente importante que den un paso al frente unidos: científicos, expertos y poderosos multimillonarios, descartando quizás a la NASA.  

No es posible avanzar en nuestros días sin explorar el universo con la mayor ambición que podamos poseer desde el exterior. Con las leyes de la física que poseemos desde antaño no es posible que dejemos de gatear en pañales la humanidad.